T cell receptor (TCR) recognition of MHC class I variants: intermolecular second-site reversion provides evidence for peptide/MHC conformational variation

نویسندگان

  • R Dyall
  • D H Fremont
  • S C Jameson
  • J Nikolić-Zugić
چکیده

We investigated mechanistic differences in antigen presentation between murine MHC class I variants H-2K(b) and H-2K(bm)8. H-2K(bm)8 differs from H-2K(b) by four residues at the floor of the peptide-binding site, affecting its B pocket which interacts with the second (P2) residue of the peptide. The rest of the molecule, including the T cell receptor (TCR)-contacting residues, is identical to H-2K(b). Due to this variation, CTLs that recognize the ovalbumin 257-264 and HSV gB 498-505 peptides on H-2K(b) cannot recognize them on H-2K(bm)8. This could be due to impaired peptide binding or an altered peptide: K(bm)8 conformation. Peptide binding studies ruled out the first explanation. Molecular modeling indicated that the most obvious consequence of amino acid variation between peptide/H-2K(b) and peptide/H-2K(bm)8 complexes would be a loss of the conserved hydrogen bond network in the B pocket of the latter. This could cause conformational variation of bound peptides. Intermolecular second-site reversion was used to test this hypothesis: P2-substituted OVA and HSV peptides, engineered to restore the hydrogen bond network of the B pocket, were the only ones which restored CTL recognition. These results provide a molecular understanding of peptide/MHC conformational variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptidic termini play a significant role in TCR recognition.

TCR recognition of class I MHC is dependent on the composition of the antigenic peptide and the MHC. Single amino acid substitutions in either the MHC or the peptide may dramatically alter recognition. While the major interactions between TCR and the peptide/MHC complex appear to be focused on the complementarity-determining region (CDR)3, it is also clear from the cocrystal structure of class ...

متن کامل

Amino acid residues that flank core peptide epitopes and the extracellular domains of CD4 modulate differential signaling through the T cell receptor

Hen egg lysozyme 52-61-specific CD4+ T cells responded by interleukin 2 (IL-2) secretion to any peptide containing this epitope regardless of length of NH2- and COOH-terminal composition. However, CD4- variants could only respond to peptides containing the two COOH-terminal tryptophans at positions 62 and 63. Substitutions at these positions defined patterns of reactivity that were specific for...

متن کامل

The V beta complementarity determining region 1 of a major histocompatibility complex (MHC) class I-restricted T cell receptor is involved in the recognition of peptide/MHC I and superantigen/MHC II complex

We investigated the role of the complementarity determining region 1 (CDR1) of T cell receptor (TCR) beta chain both in antigen/major histocompatibility complex I (MHC I) and in superantigen (SAg)/MHC II complex recognition. Residues 26 to 31 of the V beta 10 domain of a TCR derived from an H-2Kd-restricted cytotoxic clone were individually changed to alanine, using site-directed mutagenesis, a...

متن کامل

Npgrj_ni_1257 1114..1122

Unusually long major histocompatibility complex (MHC) class I–restricted epitopes are important in immunity, but their ‘bulged’ conformation represents a potential obstacle to ab T cell receptor (TCR)–MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B*3508 presenting a pe...

متن کامل

The mode of ligand recognition by two peptide:MHC class I-specific monoclonal antibodies.

The Ig superfamily members TCR and B cell receptor (BCR) share high structural and amino acid homology, yet interact with Ags in a distinct manner. The overall shape of the TCR ligand is rather constant, with the variation coming from the MHC polymorphism and the peptide heterogeneity. Consequently, the TCR alpha- and beta-chains form a relatively flat ligand-binding site that interacts with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 184  شماره 

صفحات  -

تاریخ انتشار 1996